Есть терпенье, будет и уменье
Вызов мастера:

  • Elremont
  • Крупная техника
  • Мелкая техника
  • Электрика
  • Часы
  • Разное

Вы находитесь: Elremont.ru / Микроволновые печи


В разделе вы найдете ответы на то как ремонтировать: электрочайники, утюги, кофеварки, электробритвы, фены, блендеры, миксеры, соковыжималки, вентиляторы и увлажнители


Электрику и новичку от ремонта домашней электрики до изготовления сварочных аппаратов. Советы, инструкции и схемы


Ремонт механических и электронных часов


Ремонт: зонтов, вентиляторов, вытяжки, измельчителя пищевых отходов, электронагревателей с открытой спиралью, комнатных электрообогревателей, водоумягчителя, воздухоосушителя, увлажнителя воздуха, CD проигрывателей, электродрели, электролобзика, газонокосилки, кустореза, электрокосы...


Элементы  микроволновой печи

14 декабря 2007 г.
Автор: Г.С.  Сапунов
Блок управления

Блок управления

Блоки управления для микроволновых печей встречаются двух типов: электромеханические и электронные. Имеется две основные функции, которые должен выполнять блок управления: поддержание заданной мощности и выключение печи по истечении установленного времени работы.

Независимо от типа исполнения, все печи одинаково успешно справляются с этими задачами. Поскольку электронный блок управления содержит внутри себя микроЭВМ с богатыми потенциальными возможностями, у разработчиков микроволновых печей всегда есть подспудное желание каким-то образом задействовать эти возможности. И здесь каждый изощряется, как может. Начиная от встроенных часов и заканчивая отрывками из музыкальных произведений, сигнализирующими об окончании работы. Все это можно рассматривать как некоторые излишества, не влияющие на исполнение основных функций.

Величина подаваемого в рабочую камеру уровня микроволновой мощности регулируется временем срабатывания исполнительного устройства, в качестве которого может использоваться реле, микропереключатель или симистор. Исполнительное устройство периодически включает выключает источник питания магнетрона в соответствии с выбранной мощностью.

В качестве примера на рис. 1 показаны два цикла работы микроволновой печи "Плутон", для различных режимов мощности. Полный цикл составляет 22 секунды. В зависимости от выбранной мощности магнетрон включается только на определенное время, в пределах одного цикла, а каждый последу ющий цикл периодически повторяет последовательность этих действий.

 

Процент выбранной мощности

Уровень мощности, Вт

Время включения магнетрона

100

800

70

560

40

320

20

160

Рис. 1. Продолжительность включения магнетрона при различных уровнях задаваемой мощности

Несмотря на то что многие микроволновые печи в качестве исполнительного устройства имеют симистор, позволяющий осуществлять плавную регулировку больших мощностей, питание на магнетрон всегда подается в виде импульсов. Их скважность меняется в зависимости от требуемой мощности. Очень редкие и не совсем удачные исключения лишь подчеркивают правило.

Основная причина такого подхода к конструированию печей состоит в том, что он гораздо проще и надежнее. В то же время на процесс приготовления пищи способ регулировки мощности никак не влияет.

Электромеханический блок управления состоит из таймера и связанного с ним механизма ступенчатой регулировки мощности. Часто эти детали выполнены в едином корпусе. Обычно таймер включает в себя микродвигатель, редуктор, механический звонок и систему контактов и микропереключателей, обеспечивающих включение блока питания. Типичная конструкция таймера показана на рис. 2.

Внешний вид электромеханического таймера микроволновой печи

Рис. 2. Внешний вид и внутренняя начинка типичного электромеханического таймера микроволновой печи

Поскольку таймер электромеханический, то его поломки могут быть связаны как с механическими, так и с электрическими узлами. В первом случае это, как правило, выход из строя редуктора. Типичная неисправность — поломка зубьев в пластмассовых шестернях. В этом случае двигатель таймера работает, но отсчет времени не производится, и поэтому автоматического отключения микроволновой печи по истечении заданного времени не происходит. В большинстве случаев такую неисправность можно устранить, воспользовавшись способом, показанным на рисунке.

Поломки электрической части проявляются как отсутствие замыкания или размыкания внутренних контактов. Возможен также выход из строя микродвигателя, хотя на практике такое случается крайне редко. Обычно в таймере имеется две пары контактов. Первая, назовем ее условно основной, замыкает цепь, подающую питание на вентилятор магнетрона, на лампу для освещения камеры, а также на микродвигатели столика и таймера. В цепи питания магнетрона последовательно с основной парой контактов присутствует дополнительная, обеспечивающая периодическое включение и выключение блока питания магнетрона в соответствии с выбранным режимом мощности.

Дополнительные контакты, как правило, представляют собой встроенный стандартный микропереключатель. Из-за большого тока, проходящего через обе пары контактов (около 6 А), они могут подгорать. Если процесс подгорания начался, то он будет нарастать лавинообразно, пока контакт окончательно не выйдет из строя. Чем сильнее подгорел контакт, тем больше его сопротивление и тем большая мощность, в виде тепла, будет на нем выделяться.

Сломанный микропереключатель необходимо заменить, а неработающие основные контакты можно зачистить. Контакт должен быть пружинящим, поэтому иногда его ламели требуется немного подогнуть. Чтобы добраться до контактов, таймер необходимо разобрать.

Делать это нужно с осторожностью, следя, чтобы при снятии крышки не потерять присутствующие там пружины и мелкие детали.

В некоторых микроволновых печах, например «MOULINEX», для того чтобы разобрать таймер, необходимо предварительно снять звонок. Обратите внимание на то, что винт, крепящий звонок, может иметь левую резьбу.

Структурная схема электронного блока управления показана на рис. 3.

Структурная схема электронного блока управления.

Рис. 3 Структурная схема электронного блока управления.

Основным элементом блока управления микроволновой печи является микроконтроллер, в котором запрограммированы последовательность и значения выходных сигналов в зависимости от информации, поступающей на его входы. Главным источником входной информации служит клавиатура, на которой пользователь задает время и режимы приготовления пищи. Помимо этого, на вход микроконтроллера поступает сигнал о закрытии дверцы микроволновой печи и с различных датчиков, если таковые имеются. Информация о выбранном режиме работы и о времени, остающемся до конца выполнения программы, отображается на индикаторе. В процессе работы микроконтроллер включает и выключает различные исполнительные устройства, к которым относятся репе, симисторы, пьезоэлектрические звонки и т.д.

Для согласования по мощности исполнительные устройства, а иногда и устройства индикации подключаются через буферные усилители.

Блок управления содержит также источник питания, состоящий из понижающего трансформатора, одного или нескольких выпрямителей и стабилизаторов.

Для ремонта блока управления его необходимо отсоединить от микроволновой печи, подать на него напряжение от независимого источника и поставить короткозамыкающую перемычку на блокирующий вход.

Рассмотрим более подробно основные узлы блока управления, присущие им неисправности и методы их устранения.

Клавиатура

Подавляющее большинство микроволновых печей имеют псевдосенсорную пленочную клавиатуру. Принцип ее действия показан на рис. 4.

Рис. 4 Поперечное сечение пленочной клавиатуры в области замыкаемого контакта

Клавиатура выполнена в виде трехслойной полимерной пленки, приклеенной на твердую поверхность. На верхний и нижний слои с внутренней стороны нанесены металлизированные или угольные контактные площадки, объединенные с помощью системы проводников в несколько шин.

В месте расположения контактных площадок средний слой имеет вырезы, а на лицевой стороне клавиатуры нанесены изображения кнопок. При нажатии на изображение кнопки контактные площадки замыкаются, подавая соответствующий сигнал на микроконтроллер. При отпускании кнопки клавиатура за счет эластичности материала восстанавливает исходную форму, и контакт размыкается. В качестве примера на рис. 5 показаны внутренняя структура и соединения проводников одной из наиболее часто встречающихся клавиатур, от блока управления «БУВИ-2».

Внутреннее строение пленочной клавиатуры

Рис. 5 Внутреннее строение пленочной клавиатуры от блока управления «БУВИ-2»

Сомнения в исправности клавиатуры возникают в том случае, если эффект при нажатии на изображения кнопок либо вообще отсутствует, либо не соответствует ожидаемому. Разумеется, если ваши ожидания не выходят за рамки инструкции по эксплуатации.

Убедиться в том, что неисправности блока управления вызваны работой клавиатуры, можно, вынув клавиатуру из разъема и замкнув на короткое время отрезком провода те выводы блока управления, которые должны замыкаться кнопкой подозреваемой в саботаже. Если эффект соответствует предписанному, значит, ваши сомнения оправданны и клавиатуру нужно ремонтировать.

Сложность заключается в том, что необходимо предварительно знать, какие выводы какой кнопкой замыкаются. Если требуемая информация  отсутствует, можно выбрать два пути дальнейших действий. Первый путь радикальный. Нужно отклеить клавиатуру от блока управления и по топологии, которая видна с обратной, прозрачной, стороны, составить схему коммутации.

Второй путь— это так называемый метод «научного тыка». Он может быть использован, когда входные и выходные шины разделены между собой, как, например, на рис. 5. В этом случае схему коммутации можно составить поочередным замыканием всех входных шин со всеми выходными, каждый раз анализируя полученный результат. Трудности здесь связаны с тем, что некоторые кнопки, например «ПУСК», можно включить, только если набрана предварительная информация.

Поэтому составление схемы будет происходить в несколько этапов. Вначале отмечаются те соединения, которые можно установить сразу, а затем, используя установленные контакты для предварительного набора, определяются и недостающие звенья схемы коммутации. Любители головоломок и ребусов получат истинное наслаждение.

Типичные неисправности клавиатуры

Типичными неисправностями, связанными с работой клавиатуры, являются:

  • пропадание контакта в соединительном разъеме;
  • обрыв проводящих дорожек;
  • залипания.

Первый случай наиболее простой, и часто бывает достаточно поправить контакт в разъеме, чтобы устранить возникшие проблемы. Поэтому всегда имеет смысл начинать именно с проверки этого звена, особенно если выводы клавиатуры в разъеме имеют некоторый люфт и жестко не фиксированы.

Обрыв проводящих дорожек чаще всего происходит в выводах клавиатуры. Это обусловлено тем, что данное место наиболее подвержено деформации и, кроме того, проводники здесь являются открытыми, в отличие от остальных частей клавиатуры, где проводящее покрытие закрыто пленкой с обеих сторон. Обнаружить дефектные дорожки можно, рассматривая их на просвет.

Восстановить поврежденные участки проще всего проводящим клеем. Технология такого ремонта настолько очевидна, что никаких пояснений не требуется. При отсутствии такого клея можно вырезать тонкую полоску медной или алюминиевой фольги и приклеить ее на поврежденный участок скотчем.

Не следует пытаться решить проблему с помощью паяльника, поскольку при нагреве металл, из которого состоят проводящие дорожки, будет скатываться в шарики и таким образом только усугубит неприятности. Даже если вам удастся припаять перемычку, используя низкотемпературный припой, надежность такого соединения будет невелика. Через какое-то время припой отвалится, попутно прихватив с собой часть проводящих дорожек.

В некоторых случаях обрыв дорожек происходит внутри клавиатуры. Помимо производственного брака это может быть вызвано чрезмерным усердием при нажатии клавиш и попаданием влаги на проводящую поверхность. Как правило, дорожки изготовлены методом напыления тонкого слоя серебра на полимерную пленку. Присутствие влаги вызывает окисление серебра, что может послужить причиной разрушения дорожки. Характерно, что одновременно с этим может происходить и замыкание соседних дорожек, поскольку вода, перенасыщенная ионами серебра, является хорошим электролитом, проводящим ток.

Поэтому при уходе за микроволновой печью клавиатуру можно протереть влажной ветошью, но нельзя ее мыть.

Несколько слов о том, как можно обнаружить обрыв проводящих дорожек. Для этого входные и выходные шины нужно соединить между собой и подключить к тестеру, как показано на рис. 6.

Обнаружение обрыва проводящих дорожек в пленочной клавиатуре

Рис. 6. Обнаружение обрыва проводящих дорожек в пленочной клавиатуре

При такой схеме подключения при нажатии любой кнопки будет измеряться сопротивление
соответствующего соединения. Если проводящие дорожки где-нибудь оборваны, то нажатие на определенные клавиши не приведет к изменению показаний прибора. Причем в зависимости от того, какие именно клавиши не срабатывают, можно ориентировочно определить местоположение дефектного участка. Например, если на предыдущем рисунке участок, отмеченный утолщенной линией, имеет обрыв, то не будут работать кнопки «5» и «б».

Если ни одна из кнопок не работает, то возможной причиной этого может быть неразомкнутый контакт в какой-либо кнопке или замыкание шин. Если виной всему кнопка, то проверить это можно, используя схему на рис. 6. Показания тестера будут фиксировать наличие замыкания, в то время как ни одна из кнопок не нажата. Убрав перемычки, соединяющие проводящие дорожки, и измерив сопротивление между каждой парой входных и выходных дорожек, залипшую кнопку можно локализовать.

Причиной таких залипаний может быть деформация пленки и отслоение проводящего покрытия в области контактных площадок. Последний вариант типичен для клавиатур, у которых в качестве проводящего покрытия используется нечто, напоминающее уголь. Вещество, из которого состоят контактные площадки, осыпаясь, заполняет промежуток между ними и при некотором накоплении приводит к замыканию.

Иногда замыкание происходит между соседними дорожками. В основном это происходит при попадании влаги внутрь клавиатуры и, как правило, вблизи ленточного вывода, где имеются небольшие щели. Обнаружить такой несанкционированный контакт можно путем измерения сопротивления между соседними дорожками. Оно должно быть бесконечным или около того. В противном случае можно отклеить клавиатуру от корпуса блока управления и через прозрачную тыльную сторону попытаться обнаружить место замыкания.

Теоретически считается, что клавиатура, как, впрочем, и большинство деталей микроволновой печи, ремонту не подлежит. И приходится действовать в соответствии с поговоркой: «Если нельзя, но очень хочется, то можно». Если в клавиатуре произошел внутренний обрыв или замыкание, то для восстановления ее работоспособности требуется вскрытие. Для этого нужно расчленить склеенные между собой слои в месте предполагаемого дефекта, устранить его и вновь все склеить.

Чтобы вскрытие не показало, что больной умер от вскрытия, при его проведении нельзя допускать попадания клея на токопроводящие дорожки и желательно не притрагиваться к ним руками. Но даже при соблюдении всех мер предосторожности иногда подобная операция приводит к тому, что часть дорожки оказывается на одном слое, а часть — на другом. Чтобы при последующем склеивании контакт не исчез, нужно вдоль поврежденного участка проложить тонкую полоску фольги (либо воспользоваться токопроводящим клеем).

Генератор импульсов

В последнее время кроме кнопок на лицевой панели блока управления иногда размещают механические генераторы импульсов. Эти устройства позволяют сократить время набора информации и уменьшить количество кнопок на клавиатуре.

Принцип действия и устройство генератора импульсов очень просты и поясняются на рис. 7.

Устройство механического генератора импульсов

Рис. 7. Устройство механического генератора импульсов

При повороте ручки генератора на некоторый угол φ поворачивается и укрепленный на той же оси кронштейн 1. На кронштейне имеется две пары ламелей 2. Ламели первой пары поочередно замыкаются с веерообразно расположенными металлическими полосками 3, электрически соединенными между собой. Эти полоски могут быть изготовлены непосредственно на плате методом травления.

Вторая пара ламелей обеспечивает скользящий постоянный контакт с выходными клеммами генератора. Если схема подключения механического генератора импульсов соответствует приведенной на рисунке, то поочередное замыкание и размыкание контакта между ламелями и полосками, при повороте ручки, приводит к появлению импульсов на его выходе. Ламели первой пары немного смещены друг относительно друга, поэтому выходные импульсы на выходах разнесены во времени. Это позволяет микроконтроллеру определить направление вращения ручки, что необходимо, если один и тот же генератор используется как для увеличения показаний индикатора, так и для их уменьшения.

Иногда встречается тип клавиатуры, в котором кнопки изготовлены по планарной технологии, как показано на рис. 8.

Кнопки для блока управления микроволновой печи

Рис. 8. Вариант кнопки для блока управления микроволновой печи

При нажатии на кнопку замыкаемые контакты прижимаются цилиндром из проводящей резины, обеспечивая их замыкание. Сопротивление такого контакта может составлять сотни ом, однако этого достаточно для того, чтобы микроконтроллер отличил замкнутое состояние от разомкнутого. Однако с течением времени сопротивление по разным причинам может значительно возрасти, и взаимопонимание с контроллером пропадает. Исправить это можно, если приклеить кусочек фольги на замыкающую поверхность.

Индикатор

Для отображения вводимой с клавиатуры информации и текущего состояния работы микроволновой печи служат знакосинтезирующие индикаторы. Они преобразуют электрические сигналы в видимое изображение цифр, букв и т.д. Наибольшее распространение получили индикаторы, в основу работы которых положены такие физические эффекты, как: катодолюминесценция (в вакуумных люминесцентных), электрооптические эффекты в жидких кристаллах (в жидкокристаллических) и инжекционная электролюминесценция в р-n переходах (в полупроводниковых).

По способу отображения информации индикаторы можно подразделить на сегментные и матричные. В первом случае элементы отображения выполнены в виде сегментов, из которых можно составить цифры или буквы. Типичным представителем этого семейства может служить восьмисегментный индикатор, представленный на рис. 9а. Он позволяет индицировать все цифры и ограниченное число букв.

индикаторы

Рис. 9. Восьмисегментный (а), матричный (б) и многоразрядный (в) индикаторы

Матричный индикатор представляет собой набор элементов в виде точек, сгруппированных
по строкам и столбцам (рис. 9б). С его помощью можно индицировать цифры, любые буквы, как латинского алфавита, так и кириллицы, а также различные знаки и пиктограммы.

Индикаторы могут быть многоразрядными, имеющими несколько знакомест в одном корпусе (рис. 9в). Если индикатор специально предназначен для работы в блоке управления микроволновой печи, он может содержать специфичные мнемосхемы, отображающие текущий режим работы.

Существует две основные схемы включения знакосинтезирующих индикаторов: статическая и мультиплексная.

При статическом режиме работы все элементы отображения (сегменты, точки и т.д.) имеют отдельные выводы. Управляющие сигналы подаются одновременно на все элементы, участвующие в отображении информации.

При мультиплексном режиме элементы отображения не имеют независимых выводов. Одноименные элементы всех знакомест (или элементы одной строки в матричном индикаторе) подключаются к отдельной общей шине питания. Напряжение на указанные шины подается последовательно во времени. В каждый конкретный момент под напряжением находится только одна шина. Знакоместа (столбцы в матричном индикаторе) имеют независимые выводы цепей управления. Если на какое-либо знакоместо подать постоянный управляющий сигнал, то поочередно будут высвечиваться все элементы данного знакоместа.

Для того чтобы индицировался нужный набор сегментов, управляющий сигнал подается только в те моменты, когда на соответствующие этим сегментам шины подано напряжение питания. При этом может наблюдаться некоторое мерцание элементов отображения, поскольку время их включения относительно невелико, по сравнению с периодом между включениями. Чтобы это не раздражало глаза, частота подачи импульсов питания на шины должна быть более 40 Гц. В этом случае человеческий глаз не замечает мерцания, даже если оно имеется.

В качестве наглядного примера на рис. 10 показан типичный индикатор для микроволновой печи и временные диаграммы сигналов на всех выводах при высвечивании слова «End», сигнализирующего об окончании работы.

Рис. 10 Работа многоразрядного индикатора в мультиплексном режиме

Достоинством мультиплексного режима является то, что он позволяет значительно сократить число выводов индикатора. Например, для нормальной работы полупроводникового матричного индикатора на рис. 9б в статическом режиме требуется 43 вывода, а в мультиплексном — 13.

Рассмотрим более подробно конструкции и основные особенности индикаторов, используемых в микроволновых печах.

Вакуумный люминесцентный индикатор (рис. 11) представляет собой ламповый триод, заключенный в плоский стеклянный корпус, из которого откачан воздух. Аноды выполнены в виде сегментов, покрытых катодолюминофором, светящихся под воздействием электронной бомбардировки. В зависимости от состава применяемого люминофора сегменты могут иметь различные цвета свечения. Величина анодного напряжения большинства индикаторов составляет 27 — 30 В.

Вакуумный люминесцентный индикатор для микроволновой печи

Рис. 11 Вакуумный люминесцентный индикатор для микроволновой печи

Прямонакальный катод выполнен в виде нескольких нитей тонкой вольфрамовой проволоки с оксидным покрытием, закрепленной на растяжках. Обычно питание накала осуществляется переменным напряжением 2.4 В. Срок службы вакуумного люминесцентного индикатора в значительной степени определяется долговечностью оксидного катода. Рабочая температура катода, соответствующая номинальному напряжению накала, выбирается так, чтобы обеспечить его максимальную долговечность. Повышенное напряжение накала ускоряет процесс испарения эмиссионно-активного слоя, а пониженное ослабляет устойчивость катода к воздействию факторов, отравляющих оксидное покрытие. Если напряжение накала отличается от номинального на 10%, то срок службы индикатора сокращается примерно на порядок.

Сетка выполнена из вольфрама, имеет мелкую структуру и высокую прозрачность для электронов. Для полного снятия свечения анодов-сегментов на сетку необходимо подать запирающее (отрицательное) напряжение от 1.5 до 5 В.

Жидкокристаллические индикаторы являются пассивными. Сами они света не излучают, поэтому для их работы требуется источник проходящего или отраженного света. Жидкие кристаллы представляют собой органические соединения, находящиеся в промежуточном состоянии между твердым (кристаллическим) и изотропножидким. Под воздействием электрического поля молекулы жидких кристаллов переориентируются, в результате чего меняется его прозрачность.

На рис. 12 показана конструкция жидкокристаллического индикатора, работающего в отраженном свете.

Рис. 12 Принцип действия и устройство жидкокристаллического индикатора

Между двумя прозрачными стеклянными пластинами 1 помещается жидкокристаллическое вещество 2. На внутреннюю поверхность верхней (лицевой) пластины наносятся электроды из прозрачной электропроводящей пленки 3 (например, двуокиси олова), выполненные в виде сегментов требуемой формы. Нижний электрод 4 имеет высокий коэффициент отражения и является общим для каждого знакоместа. Расстояние между пластинами составляет 5 — 20 мкм.

Если на какой-либо сегмент подано напряжение, то интенсивность отраженного света, проходящего сквозь жидкокристаллическое вещество, значительно ослабевает, в результате чего данный сегмент выглядит более темным. При отсутствии напряжения свет практически беспрепятственно отражается от зеркальной поверхности нижней пластины.

Достоинством жидкокристаллических индикаторов является их очень малое энергопотребление, недостатком — низкая контрастность, особенно при слабой освещенности. Указанный недостаток отсутствует в индикаторах, работающих в проходящем свете. Отличие таких индикаторов от рассмотренного состоит в том, что общий электрод также является прозрачным, а за нижней пластиной расположен внутренний источник света. Кроме того, существуют жидкокристаллические индикаторы, в основу работы которых положены другие физические эффекты, позволяющие, в частности, получать цветное изображение. Однако в настоящее время все эти разновидности индикаторов для микроволновых печей можно рассматривать как редкую экзотику.

Ресурс жидкокристаллических индикаторов ограничен тем, что со временем ухудшается контраст между активными и пассивными зонами, нарушается ориентация молекул, увеличивается время переключения. Это связано с электрохимическими явлениями на границе жидкий кристалл — подложка. Скорость деградационных процессов связана с наличием постоянной составляющей напряжения возбуждения, которая приводит к электролизу в жидком кристалле и газовыделению. Электроды теряют свою прозрачность, и сегменты становятся видимыми в отсутствие напряжения возбуждения, нарушается герметичность, растет ток потребления.

Полупроводниковые индикаторы представляют собой набор светодиодов, выполненных в форме сегментов, расположенных на общей подложке. Излучение светодиода возникает в области р-n перехода при пропускании через него прямого тока. При этом происходит возбуждение атомов, т.е. «накачка» электронов на более высокие энергетические уровни. Такое состояние атомов является нестабильным, поэтому они стремятся вернуться в исходное положение. В процессе возврата дополнительная энергия, полученная во время возбуждения, высвобождается в виде фотонов, что приводит к свечению. Излучение светодиодов происходит в видимом и инфракрасном диапазоне длин волн.

На полупроводники, излучающие энергию в инфракрасном диапазоне, иногда наносят люминофор, который преобразует невидимое излучение в видимое.

К достоинствам полупроводниковых индикаторов можно отнести низкое напряжение питания, совместимость с микросхемами, высокое быстродействие, механическую прочность, надежность и долговечность. К недостаткам относятся большие токи потребления, высокая стоимость.

Как правило, индикаторы для микроволновых печей ремонту не подлежат. Нет большого криминала в том, чтобы при замене использовать индикатор другого типа, но основанного на том же принципе действия. Однако это потребует некоторой переделки печатной платы, поскольку выводы у индикаторов разных типов обычно не совпадают.

Тиристоры и симисторы

Тиристор — это полупроводниковый прибор ключевого типа, проводящий ток в одном направлении. Он имеет три электрода: анод, катод и управляющий электрод. Внешний вид тиристоров и симисторов показан на рис. 11.

Внешний вид корпусов для тиристоров и симисторов

Рис. 11. Внешний вид корпусов для тиристоров и симисторов используемых в микроволновых печах

Анод тиристора электрически соединен с корпусом прибора. Семейство вольтамперных характеристик тиристора показано на рис. 12.

Вольт-амперные характеристики тиристоров

Рис. 12. Вольт-амперные характеристики тиристоров

 Прямые ветви каждой из характеристик имеют три участка. Первый от начала координат до точки А, участок с высоким сопротивлением аналогичен обратной ветви обычного выпрямительного диода. В этом состоянии тиристор выключен, и ток через него практически не проходит.

Второй участок, между точками А и В, соответствует неустойчивому состоянию, когда тиристор даже при незначительном превышении напряжения, называемого напряжением переключения Uпер, переходит в состояние с малым сопротивлением (точка В). Этот участок характеризуется отрицательным дифференциальным сопротивлением, увеличение тока на нем сопровождается снижением напряжения между катодом и анодом.

Участок от точки В и далее характеризуется высокой проводимостью или малым сопротивлением и аналогичен прямой ветви полупроводникового диода.

Если через цепь управления пропустить ток управления Iу, то напряжение переключенияуменьшается. Постепенно увеличивая Iу, мы достигнем тока спрямления, при котором участок с отрицательным сопротивлением полностью исчезает.

На практике рабочее напряжение выбирается меньше максимального напряжения переключения, которое достигается при Iу=0, поэтому при отсутствии тока управления тиристор находитсяв закрытом состоянии. В свою очередь, ток управления обычно выбирается больше, чем ток спрямления, соответственно, при наличии тока управления тиристор всегда обладает низким сопротивлением независимо от анодного напряжения.

Примечательной особенностью тиристора является то, что он, переключенный в состояние свысокой проводимостью, будет находиться в этом состоянии сколь угодно долго даже при снятии управляющего сигнала. Это свойство позволяет включать тиристор с помощью коротких импульсовуправляющего тока. Для того чтобы выключить тиристор, необходимо путем уменьшения напряжения в анодной цепи, снизить ток до некоторого малого значения, имеющего порядок тока спрямления и называемого током удержания.

Если тиристор стоит в цепи переменного тока, то еговыключение автоматически происходит в момент прохождения напряжения через ноль.

Обратная ветвь вопьт-амперной характеристики тиристора при отсутствии управляющего тока аналогична соответствующей характеристике диода. Появление тока управления вызывает незначительное увеличение обратного тока тиристора. В целом можно считать, что при отрицательном напряжении на аноде ток через тиристор не идет независимо от состояния управляющего электрода.

Тиристоры используются, в основном, как электронные ключи и регуляторы мощности. Ониспособны практически без потерь коммутировать цепи, по которым проходят токи в десятки и даже сотни ампер. Однако тиристоры имеют одно существенное неудобство — они проводят ток только в одну сторону, что ограничивает их использование в цепях переменного тока.

Этот недостаток устранен в симисторах. Свое наименование симистор получил от объединения слов «симметричный тиристор». Кое-кто на Западе обзывает симистор триаком. Иногда это слово используется и в нашей технической литературе. Чтобы не возникало путаницы, будем считать,что «триак» — это псевдоним симистора.

Симистор способен проводить ток в обоих направлениях. Переключение из закрытого состояния в открытое происходит при подаче напряжения на управляющий электрод. Для того чтобы вновь закрыть симистор, необходимо изменить полярность напряжения на основных электродах. В этом нет проблемы, поскольку симистор предназначен для работы в цепях переменного тока, где это автоматически происходит через каждые полпериода.

Конструктивно симисторы изготавливаются в тех же корпусах, что и тиристоры. Поэтому, по аналогии, основные электроды симисторов иногда называют анодом и катодом. На самом деле понятия «анод» и «катод» для симистора теряют свой смысл, поскольку его основные электроды равноценны. Существуют специальные названия для основных электродов симистора, используемые в технической литературе — силовой электрод со стороны управляющего электрода, сокращенно СЭУ, и силовой электрод со стороны основания прибора — СЭ. Однако русский язык отвергает такие длинные и мудреные названия, поэтому в обиходе по-прежнему пользуются терминами «анод» и «катод».

Вольт-амперные характеристики симистора показаны на рис. 13.

Вольт-амперные характеристики симистора

Рис. 13. Вольт-амперные характеристики симисторов

В отличие от тиристора, у симистора обратная ветвь характеристики напоминает прямую ветвь. Но именно напоминает, а не является ее зеркальным отражением. Симистор нельзя рассматривать как два встречно включенных тиристора в одном корпусе. В противном случае пришлось бы иметь два независимых управляющих электрода, что заметно усложняет схему управления.

Включение симистора в произвольном направлении осуществляется от одного источника сигнала, причем управляющий сигнал может быть как разнополярным, когда полярность между катодом и управляющим электродом соответствует полярности между катодом и анодом, так и однополярным, когда независимо от полярности напряжения между анодом и катодом на управляющий электрод подается отрицательный относительно катода потенциал.

Первый вариант более предпочтителен, с точки зрения параметров симистора, но в ряде случаев проще использовать второй вариант.

Основные отличия между прямыми и обратными ветвями вольт-амперных характеристик симистора состоят в том, что напряжение переключения и ток спрямления для прямой ветви меньше, соответствующих параметров обратной ветви.

Из этого можно сделать следующие практические выводы: если напряжение между анодом и катодом больше напряжения переключения прямой ветви и меньше напряжения переключения обратной ветви, то симистор начнет проводить ток в одном направлении, т.е. будет работать как выпрямительный диод. Аналогичная ситуация возникнет, если напряжение на приборе в обоих случаях меньше напряжения переключения, но на управляющем электроде имеется сигнал, позволяющий включить симистор только в прямом направлении.

Поскольку параметры полупроводниковых приборов заметно зависят от рабочей температуры, то при выборе симистора необходимо, чтобы рабочее напряжение с запасом отличалось от напряжения переключения. То же самое относится и к току управления: он должен быть заведомо больше тока спрямления.

Схема включения симистора в цепь переменного тока

Рис. 14. Схема включения симистора в цепь переменного тока и соответствующие ей осциллограммы токов и напряжений

Типовая схема включения симистора в цель переменного тока и соответствующие ей осциллограммы токов и напряжений показаны на рис. 14. В качестве нагрузки в схеме используется обыкновенная лампа накаливания. Источником анодного напряжения является бытовая электрическая сеть, а, на управляющий электрод подаются импульсы отрицательной полярности от специального генератора.

В моменты времени t±nπ управляющие импульсы отпирают симистор, его сопротивление резко снижается и через него начинает проходить ток. Напряжение на симисторе в этот момент падает примерно до 1 В. Такое состояние продолжается до тех пор, пока переменный ток, проходящий через симистор, не станет меньше тока удержания. В этот момент симистор запирается и остается в таком положении до прихода следующего управляющего импульса.

После этого все повторяется, но с обратной полярностью токов и напряжений. В принципе, управляющий сигнал не обязательно должен быть импульсным. Он может быть и постоянным. В этом случае симистор отпирается, когда анодный ток превышает ток спрямления. При этом возрастает ток, потребляемый цепью управления, но, как правило, он несопоставим с током анодной цели, и этим фактором можно пренебречь.

Достоинство импульсного управления заключается в том, что при этом появляется возможность регулировки выходной мощности. Если задерживать момент подачи управляющих импульсов на некоторое время относительно начала полупериода, то действующее значение напряжения, прикладываемого к нагрузке, уменьшится (рис. 15).

Форма тока в нагрузке в зависимости от времени подачи импульса на управляющий электрод симистора

Рис. 15. Форма тока в нагрузке в зависимости от времени подачи импульса на управляющий электрод симистора

 Таким образом, изменяя время задержки управляющих импульсов, можно регулировать мощность в нагрузке от»максимального значения до нуля.

В микроволновых печах рассмотренный выше принцип фазового управления мощностью, как правило, не применяется. Однако он используется в специальных сетевых адаптерах, позволяющих в сеть напряжением 220 В включать приборы, предназначенные для работы с меньшим напряжением. В частности, во многих странах мира (например, в США), стандартное напряжение бытовой электрической сети составляет 110 В, соответственно все электробытовые приборы, приобретенные там и включенные здесь, будут работать одинаково: в качестве фейерверка. Чтобы этого не произошло, и служат вышеуказанные адаптеры. Они представляют собой компактные приборы, по виду напоминающие электрический тройник, вставляемый в розетку, и начинены симистором и схемой его управления.

В микроволновых печах нагрузка всегда включается через трансформатор, который, в частности, может работать в режиме насыщения (рис. 16).

В микроволновых печах нагрузка всегда включается через трансформатор

Особенности включения симистора

Рис. 16  Особенности включения симистора микроволновой печи через  трансформатор

В этом случае кривая тока будет несколько отличаться от приведенной выше.

Во-первых, огибающая линия тока изменит свою форму. Из синусоидальной она превратится в более плоскую, ограниченную током насыщения. Кроме того, ток при индуктивной нагрузке отстает по фазе от напряжения на угол φ, примерно равный π/2. Величина этого угла зависит от соотношения между активной и реактивной составляющими сопротивления нагрузки.

Вследствие этого на тот же угол должны быть смещены и управляющие импульсы. Для обеспечения надежного включения в системах с индуктивными нагрузками чаще всего применяют широкие управляющие импульсы или пачки узких импульсов.

Как было установлено ранее, неправильный выбор режима может привести к тому, что симистор будет работать только в положительные полупериоды. В случае активной нагрузки это обычно не влечет за собой особых последствий. Однако при индуктивном характере нагрузки это чревато большими неприятностями. Ток нагрузки будет содержать постоянную составляющую, для которой индуктивность практически не представляет сопротивления. В результате, если в качестве нагрузки используется трансформатор микроволновой печи, его первичная обмотка будет сильно перегреваться и поручительство за ее дальнейшую работоспособность будет граничить с безответственностью.

В микроволновых печах типа «Лена» это основная причина выхода из строя накальных трансформаторов. Причем самое неприятное в этом случае то, что процесс может начаться самопроизвольно, в тот момент, когда печь находится в нерабочем состоянии, но подключена к сети.

Возможной причиной неправильного включения симистора может быть выход из строя одного из плеч диодного моста, питающего цепь управления. При этом в один из полупериодов сигнал управления либо вообще отсутствует, либо включает симистор с задержкой, что приводит к асимметричной работе последнего и, как результат, к появлению постоянной составляющей тока со всеми вытекающими последствиями.

В некоторых случаях, для того чтобы обеспечить хорошую развязку между анодной и управляющей цепями, управляющий электрод подключается к схеме через импульсный трансформатор или оптронную пару (рис. 17 а, б).

Варианты электрической развязки силовой и управляющей цепей при использовании симистора

Рис. 17. Варианты электрической развязки силовой и управляющей цепей при использовании симистора

В последнем варианте симистор отпирается за счет возникающей на электродах фотодиода электродвижущей силы при его освещении светодиодом. Однако данная схема будет работать только при небольших токах управления. Ситуация упрощается, если в качестве переключающего элемента использовать оптосимистор (рис. 17в). Его отличие от обычного симистора состоит в том, что он не имеет управляющего электрода, а в проводящее состояние включается за счет фотоэффекта при освещении р-n переходов встроенным в корпус светодиодом. Поэтому анодная цепь оптосимистора полностью изолирована от цепи управления.

Микроконтроллеры

Контроллером принято называть специализированную микроЭВМ, предназначенную для управления конкретными устройствами. Набор функций контроллера обычно ограничен рамками тех задач, которые необходимо решать с помощью этих устройств. Если все основные элементы контроллера расположены на одной микросхеме, то его без колебаний можно назвать микроконтрол лером (рис. 18).

Рис. 18. Внешний вид некоторых микроконтроллеров

С появлением микроконтроллеров цифровая и цифро-аналоговая схемотехника вступила в качественно новый этап своего развития. Задача всякой электронной схемы — это генерация требуемых выходных сигналов в зависимости от сигналов на входе. Раньше для решения этой задачи во многих случаях требовалось создание сложных электронных схем, состоящих из триггеров, логических элементов, дешифраторов и т.п.

При этом небольшое изменение функций схемы иногда требовало существенной ее переделки. Микроконтроллер позволяет тот же перечень задач решать программными средствами. В этом случае соотношение между входными и выходными сигналами определяется текстом программы, которая при желании достаточно просто может быть изменена.

Таким образом, одна и та же схема может быть использована и для управления микроволновой печью, и для регулировки расхода топлива в автомобиле.

Сфера применения микроконтроллеров постоянно расширяется. Это связано с тем, что они обладают большими возможностями при сравнительно низкой себестоимости. В настоящее время в мире ежегодно продаются сотни миллионов микроконтроллеров различного назначения. Практически вся электробытовая техника имеет модели со встроенными микроконтроллерами. В состав некоторых микросхем иногда включается миниатюрная литиевая батарея, и таким образом появляется возможность использовать микроконтроллеры в предметах, которые связаны с электричеством примерно так же, как соленый огурец с теоремой Пифагора.

Примером могут служить различные смарт-карты, самонаводящиеся авиабомбы и музыкальные поздравительные открытки. Похоже, недалек тот день, когда микроконтроллерами будут укомплектованы гвозди и туалетная бумага.

В блоках управления микроволновых печей используются простейшие 8-битные контроллеры. Как правило, они относятся к разряду «заказных» и имеют однократно программируемую память, т.е. указанные микроконтроллеры предназначены для работы исключительно в конкретном устройстве и не могут быть заменены ни на что другое.

«Заказной» характер микроконтроллера означает, что фирма потребитель заказывает его у фирмы производителя под свою конкретную разработку. Следствием этого является то, что из-за ограниченного спроса на эти изделия они практически отсутствуют в свободной продаже. Поэтому, если микроконтроллер вышел из строя, бессмысленно искать ему замену в магазине радиотоваров. Единственное место, где его можно отыскать, это сервисная ремонтная служба компании, производителя данной бытовой техники.

Цели и объем данного сайта не позволяют подробно останавливаться на устройстве и описании работы каждого из многочисленного семейства микроконтроллеров. (Для справки: только компания «Моторола» производит более 300 наименований.) Поэтому мы рассмотрим только общие вопросы, которые позволят как-то ориентироваться в этой проблеме, а конкретные рецепты приводятся непосредственно в описаниях работы некоторых блоков управления.

В состав микроконтроллера входят следующие основные элементы: микропроцессор, оперативное запоминающее устройство (ОЗУ или RAM, в латинской транскрипции), постоянное запоминающее устройство (ПЗУ или ROM), порты ввода-вывода. Дополнительно контроллеры могут комплектоваться различными таймерами, аналого-цифровыми преобразователями и т.п., в зависимости от сферы их применения. Блок-схема типового контроппера представлена на рис. 19.

Блок-схема контроллера

Рис. 19. Блок-схема контроллера

Основной элемент микроконтроллера — это процессор. Он синхронизирует работу всех остальных устройств и следит за их деятельностью. Кроме того, внутри процессора имеется арифметико-логическое устройство (АЛУ), которое условно можно представить как встроенный калькулятор. Во время работы процессор последовательно считывает информацию из памяти, распознает записанные там инструкции и либо сам их исполняет, например, когда требуются вычисления, либо поручает это своим коллегам.

Последовательность действий процессора задается программой, хранимой в ПЗУ. Обычно программа записывается в процессе производства микроконтроллера и после этого не может быть изменена. Объем постоянной памяти обычно составляет единицы или десятки килобайт. (Один байт информации позволяет хранить любую цифру, букву кириллицы или латинского алфавита, математические и некоторые другие знаки, всего 256 символов, поэтому он принят в качестве единицы измерения.)

Вводимые пользователем данные (время работы, режим и т.д.) и результаты промежуточных вычислений процессора хранятся в ОЗУ. Информация, хранимая в ОЗУ, в любой момент может быть прочитана процессором или изменена. При отключении питания информация пропадает, в отличие от ПЗУ, где она хранится вечно. Объем ОЗУ в микроконтроллерах невелик и составляет всего несколько сотен байт.

Порты ввода-вывода служат для связи микроконтроллера с внешним миром. Они обеспечивают ввод информации с клавиатуры, ее отображение на индикаторе и выдачу управляющих сигналов на исполнительные устройства, такие, как реле, симисторы, сигнальные зуммеры и т.д. Для согласования по мощности выходы портов иногда подключают к исполнительным устройствам через буферные усилители.

В некоторых печах имеются различного рода датчики (температуры, пустой камеры, веса, влажности и т.д.), которые имеют аналоговый сигнал на выходе. Для преобразования этих сигналов в понятный микроконтроллеру цифровой код служит входящий в его состав аналого-цифровой преобразователь (АЦП). Еспи печь имеет сразу несколько датчиков, АЦП может работать в мультиплексном режиме, поочередно отслеживая их показания.

Передача данных от одного блока к другому осуществляется по магистрали данных. Выходы всех блоков микроконтроллера имеют три устойчивых состояния: логические «0» и «1», а также обрыв (так называемое 2-состояние). В последнем случае блок может быть полностью электрически отсоединен от магистрали данных. Это позволяет процессору упорядочить связь между блоками таким образом, чтобы в каждый момент времени к магистрали данных было подключено только по одному выходу и требуемое число входов.

Основной вопрос при ремонте блока управления микроволновой печи — это определить, связана ли поломка с работой микроконтроллера, и если да, то можно ли этому помочь. Необходимо заметить, что подобные неисправности встречаются не часто, поэтому, прежде чем грешить на микроконтроллер, нужно убедиться в том, что проблема не связана с более простыми вещами.

Прежде всего необходимо убедиться в наличии питания и его соответствии номинальному значению. Имеет смысл просмотреть печатную плату на предмет обнаружения обрывов и «закороток». В качестве последних иногда служат плоды пищеварения известных своей прожорливостью и плодовитостью насекомых.

«Закорачивание» может произойти также в клавиатуре. Невозможность запуска может свидетельствовать об отсутствии сигнала блокировки дверцы.

Как уже отмечалось, практически невозможно найти замену неисправному микроконтроллеру. Если он вышел из строя, то у вас имеется два выхода: выбросить блок управления или попытаться его исправить. Первое быстрее. Сразу отметим, что применительно к печам российского производства («Берегиня», «Электроника-25» и т.д.), в которых контроллер выполнен на основе однокристальной микроЭВМ общего назначения с внешним ПЗУ, подобная дилемма возникает при неисправном ПЗУ.

В некоторых печах (например, «Gold Star») вышедший из строя микроконтроллер иногда можно искусственно реанимировать, но такое случается относительно редко.

Теоретически возможно поставить универсальный программируемый микроконтроллер вместо сломанного. Для этого, например, может сгодиться программируемая однокристальная микроЭВМ семейства МК51 (российский аналог КМ1816ВЕ51). Автору в своей практике приходилось проделывать подобную процедуру, однако рекомендовать ее для массового использования вряд ли целесообразно.

Основная проблема заключается в написании программы, которая должна обеспечивать управление всеми функциями микроволновой печи с учетом особенностей существующей схемы. Даже у специалиста это может отнять от несколько дней, до нескольких недель. Кроме того, для «прошивки» микросхемы требуются компьютер и программатор. Поэтому мы не будем детально останавливаться на этом вопросе: тот, кто чувствует в себе способность справиться с этой задачей, скорее всего, обойдется без авторских рекомендаций, а неспециалисту лучше не добавлять себе головной боли.

Легче не ввязываться, чем развязаться.

Удачи в ремонте!!

Всего хорошего, пишите to Elremont © 2007




Рекомендуемый контент

Навигация

Информация

Быть в курсе

Реклама от YouDo